How do you integrate e^(3x)/(e^6x-36)^(1/2)dx?

1 Answer
Mar 15, 2015

The answer is: 1/3ln(e^(3x)+sqrt(e^(6x)-36))+c.

First of all I assume that there is an error in your writing: I think that e^6x would be e^(6x).

Let's assume:

e^(3x)=6coshtrArr3x=ln6coshtrArrx=1/3ln6coshtrArr

dx=1/3*(6sinht)/(6cosht)dt=1/3sinht/coshtdt.

Our integral becomes:

int(6cosht)/sqrt(36cosh^2t-36)*1/3sinht/coshtdt=2intsinht/(6sqrt(cosh^2t-1))dt=

=1/3intsinht/sinhtdt=1/3intdt=1/3t+c=(1).

Since e^(3x)=6coshtrArrcosht=e^(3x)/6rArrt=arccosh(e^(3x)/6).

So:

(1)=1/3arccosh(e^(3x)/6)+c.

There is another way to write the solution, remembering the logarithmic expression of the function y=arccoshx, that is:

y=ln(x+sqrt(x^2-1)).

So:

(1)=1/3ln(e^(3x)/6+sqrt(e^(6x)/36-1))+c=

=1/3ln((e^(3x)+sqrt(e^(6x)-36))/6)+c=

=1/3ln(e^(3x)+sqrt(e^(6x)-36))-1/3ln6+c=

=1/3ln(e^(3x)+sqrt(e^(6x)-36))+c

because -1/3ln6 is a number.