How do you integrate e^7x^3 x^2 dx?

1 Answer
Aug 15, 2016

=(e^7)/6 (x^6) +C

Explanation:

int e^7x^3x^2 \dx

I can see two approaches 1) combining the x terms or 2) doing u substitution. first lets express this differently by moving out the constant

e^7int x^3x^2 \dx
1)

e^7int x^5\dx
(e^7)/6 (x^6)+C

2)
now i will use u substitution and let u=x^3 then
(du)/(dx) =3x^2
1/3du=x^2 dx

now substituting this back in
e^7int u1/3 \du
(e^7)/3int u \du

=(e^7)/3 (u^2)/2 +C
now we place replace u
=(e^7)/6 (x^3)^2 +C
=(e^7)/6 (x^6) +C