How do you integrate e^(cos3x)sin3xdx?

1 Answer
Apr 3, 2015

This is almost, but not quite int e^u du. Try to make it of that form.

Let u=cos 3x. This makes du = -3sin3x dx.

Use whatever details of substitution you've been taught to get:

int e^(cos3x) sin3x dx= -1/3 int e^u du = -1/3e^u +C

=-1/3 e^(cos3x) +C.

Alternative Notation:
Let g(x)=cos 3x. This makes g'(x) = -3sin3x.

int e^(cos3x) sin3x dx = -1/3 int e^g(x) g'(x)dx = -1/3 e^ g(x) +C

=-1/3 e^( cos3x) +C