How do you integrate (e^x)(cosx) dx?

1 Answer
Apr 29, 2015

This integral is a cyclic one and has to be done two times with the theorem of the integration by parts, that says:

intf(x)g'(x)dx=f(x)g(x)-intg(x)f'(x)dx

We can assume that f(x)=cosx and g'(x)dx=e^xdx,

f'(x)dx=-sinxdx

g(x)=e^x,

so:

I=e^xcosx-inte^x(-sinx)dx=

=e^xcosx+inte^xsinxdx=(1).

And now...again:

f(x)=sinx and g'(x)dx=e^xdx,

f'(x)dx=cosxdx

g(x)=e^x.

So:

(1)=e^xcosx+[e^xsinx-inte^xcosxdx]=

=e^xcosx+e^xsinx-inte^xcosxdx.

So, finally, we can write:

I=e^xcosx+e^xsinx-IrArr

2I=e^xcosx+e^xsinx-IrArr

I=e^x/2(cosx+sinx)+c.