How do you integrate f(x)=intsin(e^t)dt between 4 to x^2?

1 Answer
May 22, 2018

int_4^(x^2)sin(e^t)dt≈int _0^(+oo)sin(y)/ydy=pi/2

Explanation:

int_4^(x^2)sin(e^t)dt
Let y=e^t
t=lny
dt=(dy)/y
int_4^(x^2)sin(e^t)dt=int_(e^4)^(e^(x²))sin(y)/ydy, and we can see that there's no result of this integration. However, using Dirichlet integral:
(int_(e^4)^(e^(x²))sin(y)/ydy) _(x to oo)≈int _0^(+oo)sin(y)/ydy=pi/2
\0/ Here's our answer!