How do you integrate int 1/(sqrtx(sqrtx+1)^2)1x(x+1)2 using substitution?

1 Answer
Dec 30, 2016

The answer is =-2/(sqrtx+1)+C=2x+1+C

Explanation:

We need

intx^ndx=x^(n+1)/(n+1)+C (n!=-1)xndx=xn+1n+1+C(n1)

We use the substitution

u=sqrtx+1u=x+1

du=dx/(2sqrtx)du=dx2x

Therefore,

intdx/(sqrtx(1+sqrtx)^2)=2int(du)/u^2dxx(1+x)2=2duu2

=2*-1/u=21u

=-2/(sqrtx+1)+C=2x+1+C