How do you integrate int (2-sqrtx)^5/sqrtx(2x)5x using substitution?

1 Answer
Jun 24, 2017

int (2-sqrtx)^5/sqrtx dx = - (2-sqrtx)^6/3+C(2x)5xdx=(2x)63+C

Explanation:

Substitute:

t = 2-sqrtxt=2x

dt = -dx/(2sqrtx)dt=dx2x

thus:

int (2-sqrtx)^5/sqrtx dx = -2 int t^5dt =-t^6/3 + C(2x)5xdx=2t5dt=t63+C

and undoing the substitution:

int (2-sqrtx)^5/sqrtx dx = - (2-sqrtx)^6/3+C(2x)5xdx=(2x)63+C