How do you integrate int 2x sin 4x dx?

1 Answer
Jan 20, 2016

Use integration by parts to find that

int2xsin(4x)dx = 1/8sin(4x)-1/2xcos(4x)+C

Explanation:

Using integration by parts:

Let u = x and dv = sin(4x)dx
Then du = dx and v = -1/4cos(4x)

So, by the integration by parts formula intudv = uv - intvdu

2intxsin(4x)dx = 2(-1/4xcos(4x)-int((-1/4)cos(4x)dx)

=-1/2(xcos(4x)-intcos(4x)dx)

= -1/2(xcos(4x)-1/4sin(4x) + C)

= 1/8sin(4x)-1/2xcos(4x)+C