How do you integrate #int 3 dt#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Ratnaker Mehta Feb 26, 2017 #3t+C.# Explanation: We know that, for a const. #k, intkf(t)dt=kintf(t)dt.# #:. int3dt=3intdt=3intt^0dt.# Since, #intt^ndt=t^(n+1)/(n+1)+c, where, n!=-1,# we have, #int3dt=3intt^0dt=3{t^(0+1)/(0+1)}=3(t^1/1)=3t+C.# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 7552 views around the world You can reuse this answer Creative Commons License