How do you integrate int 3 xln x^2 dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Narad T. Feb 12, 2017 The answer is =3x^2ln(|x|)-3/2x^2+C Explanation: Integration by parts is intu'vdx=uv-intuv'dx Here, we have int3xln(x^2)dx=6intxlnxdx v=lnx, =>, v'=1/x u'=x, =>, u=x^2/2 Therefore, int3xln(x^2)dx=6(1/2x^2lnx-int1/2xdx) =3x^2lnx-3*1/2*x^2 =3x^2ln(|x|)-3/2x^2+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2507 views around the world You can reuse this answer Creative Commons License