Here,
I=int(3x)ln(2x)dx
"Using "color(blue)"Integration by Parts"
color(red)(int(u*v)dx=uintvdx-int((du)/(dx)intvdx)dx
Let, u=ln(2x)and v=3x,we get
(du)/(dx)=1/(2x)*2=1/x and intvdx=(3x^2)/2
=>I=ln(2x)(3x^2)/2-int(1/x(3x^2)/2)dx
=(3x^2)/2ln(2x)-3/2intxdx+c
=(3x^2)/2ln(2x)-3/2*x^2/2+C
=(3x^2)/4(2ln(2x)-1)+C
=(3x^2)/4(ln(2x)^2-1)+C
=(3x^2)/4(ln(2x)^2-1)+C
=(3x^2)/4(ln(4x^2)-1)+C