How do you integrate #int (-9/x^4)dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Narad T. Feb 3, 2017 The answer is #=3/x^3+C# Explanation: We need #intx^ndx=x^(n+1)/(n+1)+C(n!=-1)# Here, #int-9/x^4dx=-9intx^-4dx# #=-9x^(-4+1)/(-4+1)+C# #=-9/-3*1/x^3*C# #=3/x^3+C# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 4677 views around the world You can reuse this answer Creative Commons License