How do you integrate int cos^2x by integration by parts method?

1 Answer
Jan 23, 2017

x/2+1/2sin x cos x + c

Explanation:

If you really want to integrate by parts, choose u=cos x, dv= cos x dv, du=-sin xdx, v = sin x.

int udv = uv - int v du

int cosx cosx dx= cos x sinx - int sin x (-sin x)dx

int cos^2 x dx= cos x sin x + int (1 - cos^2x)dx

int cos^2 x dx= cos x sin x + int 1 dx - int cos^2x dx

Now for the sneaky part: take the integral on the right over to the left:

2int cos^2x dx = cos x sin x + x

Hence
int cos^2xdx = 1/2 x + 1/2 sin x cos x

However, a shorter way is to use the identities cos2x = cos^2x-sin^2x = 2 cos^2 x - 1 = 1 - 2sin^2 x and sin2x=2sinxcosx.

int cos^2 x=int (1+cos2x)/2dx

=int1/2 dx + 1/2 int cos2x dx

=1/2x +1/2sin 2x+c

=1/2x+sinxcosx+c