How do you integrate int (cosx)(coshx)∫(cosx)(coshx) using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Ultrilliam Apr 11, 2018 below Explanation: I = int \ cosx \ coshx \ dx = int \ cosx \ d(sinh x) = cosx sinh x - int \ d( cosx) \ sinh x = cosx sinh x + int sin x \ sinh x \ dx = cosx sinh x + int sin x \ d(cosh x) = cosx sinh x + (sin x cosh x - int \ d(sin x )\ cosh x) = cosx sinh x + sin x cosh x - I implies I = 1/2 ( cosx sinh x + sin x cosh x) + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2481 views around the world You can reuse this answer Creative Commons License