How do you integrate int e^(sqrt(2x)) by parts?
1 Answer
Jan 19, 2017
Explanation:
I=inte^(sqrt(2x))dx
Let
I=inte^t(tcolor(white).dt)=intte^tdt
We will use integration by parts now, which takes the form
{(u=t" "=>" "du=dt),(dv=e^tdt" "=>" "v=e^t):}
Then:
I=uv-intvdu
I=te^t-inte^tdt
I=te^t-e^t+C
I=e^t(t-1)+C
Returning to
I=e^sqrt(2x)(sqrt(2x)-1)+C