How do you integrate int e^x/(4-e^x) using substitution?

2 Answers
Oct 25, 2016

-lnabs(4-e^x)+C

Explanation:

inte^x/(4-e^x)dx

Let u=4-e^x. Differentiating this shows that du=-e^xdx. Thus:

inte^x/(4-e^x)dx=-int(-e^xdx)/(4-e^x)=-int(du)/u

This is a common integral:

=int(du)/u=-lnabsu+C=-lnabs(4-e^x)+C

Oct 25, 2016

=-ln(4-e^x)+C

Explanation:

Use the substitution u=4-e^x
Then du=-e^xdx

So int(e^xdx)/(4-e^x)=int(-du)/u

=-lnu

-ln(4-e^x)+C