How do you integrate int e^x sin x dx using integration by parts?

1 Answer
Jan 7, 2016

inte^xsin(x)dx = (e^xsin(x) - e^xcos(x))/2 + c

Explanation:

Say dv = e^x so v = e^x, u = sin(x) so du = cos(x)

inte^xsin(x)dx = e^xsin(x) - inte^(x)cos(x)dx

Say dv = e^x so v = e^x, u = cos(x) so du = -sin(x)

inte^xsin(x)dx = e^xsin(x) - (e^xcos(x) +inte^xsin(x)dx)
inte^xsin(x)dx = e^xsin(x) - e^xcos(x) -inte^xsin(x)dx
2inte^xsin(x)dx = e^xsin(x) - e^xcos(x)
inte^xsin(x)dx = (e^xsin(x) - e^xcos(x))/2 + c