How do you integrate int e^x sin x dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Lovecraft Jan 7, 2016 inte^xsin(x)dx = (e^xsin(x) - e^xcos(x))/2 + c Explanation: Say dv = e^x so v = e^x, u = sin(x) so du = cos(x) inte^xsin(x)dx = e^xsin(x) - inte^(x)cos(x)dx Say dv = e^x so v = e^x, u = cos(x) so du = -sin(x) inte^xsin(x)dx = e^xsin(x) - (e^xcos(x) +inte^xsin(x)dx) inte^xsin(x)dx = e^xsin(x) - e^xcos(x) -inte^xsin(x)dx 2inte^xsin(x)dx = e^xsin(x) - e^xcos(x) inte^xsin(x)dx = (e^xsin(x) - e^xcos(x))/2 + c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1693 views around the world You can reuse this answer Creative Commons License