How do you integrate ln(1+x2) by parts from [0,1]?

1 Answer
Feb 14, 2017

10ln(1+x2)dx=ln22+π2

Explanation:

We can take x as finite part:

10ln(1+x2)dx=[xln(1+x2)]1010xd(ln(1+x2))

(1)10ln(1+x2)dx=ln2210x2dx1+x2

Now solving the resulting integral:

10x2dx1+x2=10x2+111+x2dx

10x2dx1+x2=10(111+x2)dx

10x2dx1+x2=10dx10dx1+x2

10x2dx1+x2=[x]10[arctanx]10

10x2dx1+x2=1π4

Substitute in (1):

10ln(1+x2)dx=ln22+π2