How do you integrate int (lnx)^2 by integration by parts method?

2 Answers
Oct 10, 2016

x(lnx)^2-2xlnx+2x+C

Explanation:

I=int(lnx)^2dx

Integration by parts takes the form: intudv=uv-intvdu

So, for the given integral, let:

{(u=(lnx)^2" "=>" "du=(2lnx)/xdx),(dv=dx" "=>" "v=x):}

Plugging these into the integration by parts formula, this becomes:

I=x(lnx)^2-intx((2lnx)/x)dx

I=x(lnx)^2-2intlnxdx

To solve this integral, we will reapply integration by parts:

{(u=lnx" "=>" "du=1/xdx),(dv=dx" "=>" "v=x):}

Thus, this becomes:

I=x(lnx)^2-2[xlnx-intx(1/x)dx]

I=x(lnx)^2-2xlnx+2intdx

I=x(lnx)^2-2xlnx+2x+C

Oct 10, 2016

:. int (lnx)^2 dx = x(lnx)^2-2xlnx +2x +c

Explanation:

Remember the formula for IBP: int u(dv)/dxdx=uv-intv(du)/dxdx

Let u=lnx=>(du)/dx=1/x
Let (dv)/dx=lnx=>v=intlndx=xlnx - x (see additional notes)

Substitute into the IBP equation:
int (lnx)(lnx) dx = (lnx)(xlnx-x) - int (xlnx-x)1/x dx
:. int (lnx)^2 dx = x(lnx)^2-xlnx - int (lnx-1 )dx
:. int (lnx)^2 dx = x(lnx)^2-xlnx - (xlnx-x -x) +c
:. int (lnx)^2 dx = x(lnx)^2-xlnx - xlnx +2x +c
:. int (lnx)^2 dx = x(lnx)^2-2xlnx +2x +c

Additional Notes:
How do you find intlndx=xlnx - x. Firstly its is extremely helpful to learn this result, but if you can't or you need to prove it then you need to use IBP again:

Let u=lnx=>(du)/dx=1/x
Let (dv)/dx=1=>v=x
Substitute into the IBP equation:
int (lnx)(1)dx=(lnx)(x)-int(x*1/x)dx
:. int lnxdx=xlnx-int(1)dx
:. int lnxdx=xlnx-x (+c)