How do you integrate int (lnx)^2/x^3 using integration by parts?

1 Answer
Jul 30, 2017

The answer is =-(lnx)^2/(2x^2)-lnx/(2x^2)-1/(4x^2)+C

Explanation:

The integration by oarts is

intuv'dx=uv-intu'vdx

Here,

u=(lnx)^2, =>, u'=2lnx*1/x

v'=1/x^3, =>, v=-1/(2x^2)

Therefore,

int((lnx)^2dx)/x^3=-(lnx)^2/(2x^2)-int(-lnxdx)/x^3=-(lnx)^2/(2x^2)+int(lnx)/x^3

We do once more the integration by parts

u=lnx,=>, u'=1/x

v'=1/x^3, =>, v=-1/(2x^2)

So,

int(lnx)/x^3=-lnx/(2x^2)+intdx/(2x^3)=-lnx/(2x^2)-1/(4x^2)

Therefore,

int((lnx)^2dx)/x^3=-(lnx)^2/(2x^2)-lnx/(2x^2)-1/(4x^2)+C