How do you integrate #int re^(r/2)# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Narad T. Oct 20, 2016 #intre^(r/2)dr=(2r-4)e^(r/2)+C# Explanation: Let #u=r# then #u'=1# and #v'=e^(r/2)# then #v=2e^(r/2)# #intuv'=uv-intu'v# so #intre^(r/2)dr=2re^(r/2)-int2e^(r/2)dr# #=2re^(r/2)-2*2e^(r/2)# #=2re^(r/2)-4e^(r/2)+C# #=(2r-4)e^(r/2)+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 7098 views around the world You can reuse this answer Creative Commons License