How do you integrate ∫sin2(x)dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Bio Nov 3, 2015 ∫sin2(x)dx=x2−sin(2x)4+c, where c is the constant of integration. Explanation: ∫sin2(x)dx=∫ddx(x)sin2(x)dx =xsin2(x)−∫xddx(sin2(x))dx =xsin2(x)−∫x(2sin(x)cos(x))dx =xsin2(x)−∫xsin(2x)dx =xsin2(x)+12∫xddx(cos(2x))dx =xsin2(x)+12[xcos(2x)−∫ddx(x)cos(2x)dx] =xsin2(x)+12xcos(2x)−12∫cos(2x)dx =xsin2(x)+12xcos(2x)−sin(2x)4+c, where c is the constant of integration. =x2(cos(2x)+2sin2(x))−sin(2x)4+c =x2−sin(2x)4+c Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 20315 views around the world You can reuse this answer Creative Commons License