How do you integrate int sqrt(arcsinx/(1-x^2) using substitution?

2 Answers
Oct 9, 2016

Not only does this integral needs a standard Trig substitution, but also an inverse trig identity not commonly used.

Explanation:

int(sqrt((sin^-1)/(1-x^2))) dx

x=cosu rArrdx=-sinudu
cos^1x=u

sin^-1 +cos^-1=pi/2

sin^-1x=(pi/2)-cos^-1u
sin^-1x=pi/2 -u

substituting into the integral

int(sqrt((pi/2-u)/(1-cos^2u)))xx(-sinudu)

-int((pi/2-u)^(1/2)/sqrt(sin^2u))sinudu

-int((pi/2-u)^(1/2)/(sinu))sinudu

sinu is cancelled from numerator and denominator

-int(pi/2-u)^(1/2)du

integrating by inspection

=2/3(pi/2-u)^(3/2)+C

substitute back for u

=2/3(pi/2-cos^-1x)^(3/2)+C

=2/3(sin^-1x)^(3/2)+C

Oct 9, 2016

2/3(arcsinx)^(3/2)+C

Explanation:

intsqrt(arcsinx/(1-x^2))dx

Note that the square root can be split up:

=intsqrtarcsinx/sqrt(1-x^2)dx

Furthermore, note that we have an arcsin function and its derivative present:

=int(arcsinx)^(1/2)(1/sqrt(1-x^2))dx

Using substitution, where u=arcsinx and du=1/sqrt(1-x^2)dx:

=intu^(1/2)du

Using the typical power rule for integration:

=u^(3/2)/(3/2)+C=2/3u^(3/2)+C=2/3(arcsinx)^(3/2)+C