How do you integrate int sqrtx ln 2xdx?

1 Answer
Apr 12, 2015

By part :

du = sqrt(x)
u = 2/3sqrt(x^3)

v = ln(2x)
dv = 1/x

=[2/3sqrt(x^3)*ln(2x)]-2/3intsqrt(x^3)/xdx

Note : sqrt(x^3)/x = x^(3/2-1)=x^(1/2) = sqrt(x)

Finally we have :

=[2/3sqrt(x^3)*ln(2x)]-4/9[sqrt(x^3)]+C

=2/9sqrt(x^3)(3ln(2x)-2)+C