How do you integrate int sqrtx ln 2xdx? Calculus Techniques of Integration Integration by Parts 1 Answer Tom Apr 12, 2015 By part : du = sqrt(x) u = 2/3sqrt(x^3) v = ln(2x) dv = 1/x =[2/3sqrt(x^3)*ln(2x)]-2/3intsqrt(x^3)/xdx Note : sqrt(x^3)/x = x^(3/2-1)=x^(1/2) = sqrt(x) Finally we have : =[2/3sqrt(x^3)*ln(2x)]-4/9[sqrt(x^3)]+C =2/9sqrt(x^3)(3ln(2x)-2)+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1797 views around the world You can reuse this answer Creative Commons License