How do you integrate int sqrtxlnxxlnx by integration by parts method?

1 Answer
Jan 29, 2017

intsqrt(x)ln(x)dx=2/3x^(3/2)(ln(x)-2/3)+Cxln(x)dx=23x32(ln(x)23)+C

Explanation:

Using integration by parts:

Let u = ln(x) => du = 1/xdxu=ln(x)du=1xdx
and dv = x^(1/2)dx => v = 2/3x^(3/2)dv=x12dxv=23x32

Using the integration by parts formula intudv = uv-intvduudv=uvvdu

intsqrt(x)ln(x)dx = intln(x)x^(1/2)dxxln(x)dx=ln(x)x12dx

=2/3x^(3/2)ln(x)-int2/3x^(3/2)*1/xdx=23x32ln(x)23x321xdx

=2/3x^(3/2)ln(x)-2/3intx^(1/2)dx=23x32ln(x)23x12dx

=2/3x^(3/2)ln(x)-2/3(2/3x^(3/2))+C=23x32ln(x)23(23x32)+C

=2/3x^(3/2)(ln(x)-2/3)+C=23x32(ln(x)23)+C