How do you integrate int troot3(t-4)dt?

1 Answer
Jan 29, 2017

3/7(t-4)^(7/3)+3(t-4)^(4/3)+C

Explanation:

I=inttroot3(t-4)color(white).dt

Apply the substitution u=t-4. This also implies that t=u+4 and du=dt. Then:

I=int(u+4)root3ucolor(white).du

We can write root3u with a fractional exponent and then distribute:

I=int(u+4)u^(1/3)color(white).du

I=intu^(4/3)color(white).du+4intu^(1/3)color(white).du

Integrate both using the rule intu^ncolor(white).du=u^(n+1)/(n+1)+C:

I=u^(7/3)/(7/3)+4(u^(4/3)/(4/3))+C

I=3/7u^(7/3)+3u^(4/3)+C

Since u=t-4:

I=3/7(t-4)^(7/3)+3(t-4)^(4/3)+C