How do you integrate int troot3(t-4)dt?
1 Answer
Jan 29, 2017
Explanation:
I=inttroot3(t-4)color(white).dt
Apply the substitution
I=int(u+4)root3ucolor(white).du
We can write
I=int(u+4)u^(1/3)color(white).du
I=intu^(4/3)color(white).du+4intu^(1/3)color(white).du
Integrate both using the rule
I=u^(7/3)/(7/3)+4(u^(4/3)/(4/3))+C
I=3/7u^(7/3)+3u^(4/3)+C
Since
I=3/7(t-4)^(7/3)+3(t-4)^(4/3)+C