How do you integrate int (x+1)sqrt(2-x)dx(x+1)2xdx?

1 Answer
Dec 10, 2016

(-2(2-x)^(3/2)(x+3))/5+C2(2x)32(x+3)5+C

Explanation:

I=int(x+1)sqrt(2-x)dxI=(x+1)2xdx

Let u=2-xu=2x. This implies that du=-dxdu=dx. Also note that -u=x-2u=x2, so -u+3=x+1u+3=x+1. Then:

I=int(-u+3)sqrtu(-du)=int(u-3)sqrtuduI=(u+3)u(du)=(u3)udu

Expanding the square root as u^(1/2)u12:

I=int(u(u^(1/2))-3u^(1/2))du=int(u^(3/2)-3u^(1/2))duI=(u(u12)3u12)du=(u323u12)du

Now using intu^ndu=u^(n+1)/(n+1)+Cundu=un+1n+1+C:

I=u^(5/2)/(5/2)-3(u^(3/2)/(3/2))=2/5u^(5/2)-2u^(3/2)I=u52523(u3232)=25u522u32

Factoring and making it look nice:

I=u^(3/2)(2/5u-2)=(u^(3/2)(2u-10))/5=(2u^(3/2)(u-5))/5I=u32(25u2)=u32(2u10)5=2u32(u5)5

From u=2-xu=2x:

I=(2(2-x)^(3/2)((2-x)-5))/5=(-2(2-x)^(3/2)(x+3))/5+CI=2(2x)32((2x)5)5=2(2x)32(x+3)5+C