How do you integrate x3cotxdx using integration by parts?

1 Answer
Nov 28, 2016

You can't.

Explanation:

The antiderivative of x3cotx involves the Polylogarithm Function evaluated at imaginary values.

I=x3cotxdx

Let u=x3 so du=3x2dx and

let dv=cotxdx so v=cotxdx=ln|sinx|.

I=x3ln|sinx|3x2ln|sinx|dx

Let u=x2 so du=2xdx

let dv=ln|sinx|dx so v=12i(x2+Li2(e2ix))xln(1e2ix)+xln|sinx|

Where Li2(x)=k=1xkk2 (known as the polylogarithm or Jonquiere's function.)

At this point I'll let you finish yourself. (Because I'm out of my depth.)