How do you integrate x3tanxdx using integration by parts?

1 Answer
Jan 7, 2016

x3tan(x)dx=ln|cos(x)|(x33x2+6x6+c)

Explanation:

Say dv=tan(x) so v=ln|cos(x)|
And u=x3 so du=3x2

x3tan(x)dx=x3ln|cos(x)|3tan(x)x2dx

For the latter integral, repeat

dv=tan(x) so v=ln|cos(x)|, u=x2 so du=2x

x3tan(x)dx=x3ln|cos(x)|3(x2ln|cos(x)|2tan(x)xdx)
x3tan(x)dx=x3ln|cos(x)|3x2ln|cos(x)|+6tan(x)xdx

And once more to finish it

dv=tan(x) so v=ln|cos(x)|, u=x so du=1

x3tan(x)dx=x3ln|cos(x)|3x2ln|cos(x)|+6(xln|cos(x)|ln|cos(x)|+c)

x3tan(x)dx=x3ln|cos(x)|3x2ln|cos(x)|+6xln|cos(x)|6ln|cos(x)|+c

Or

x3tan(x)dx=ln|cos(x)|(x33x2+6x6+c)