How do you integrate int x^3sqrt(x^2-1) using substitution?

2 Answers
Jul 29, 2016

1/15(3x^2+2)(x^2-1)^(3/2)+C.

Explanation:

Let us take the subst. x^2-1=t^2, so, x^2=t^2+1, &,

2xdx=2tdt, or, xdx=tdt

Now, I=intx^3sqrt(x^2-1)dx=intx^2sqrt(x^2-1)xdx

=int(t^2+1)(sqrt(t^2))tdt=int(t^4+t^2)dt=t^5/5+t^3/3

=t^3/15(3t^2+5)=t/15*t^2(3t^2+5)

=sqrt(x^2-1)/15*(x^2-1){3(x^2-1)+5}

=1/15(3x^2+2)(x^2-1)^(3/2)+C.

Jul 29, 2016

Here is a third solution.

Explanation:

intx^3sqrt(x^2-1) dx = int x^2sqrt(x^2-1) x dx

Let u = x^2-1,

so that du = 2xdx

and x^2 = u+1.

The integral becomes

int (u+1)u^(1/2) 1/2 du = 1/2 int (u^(3/2)+u^(1/2))du

= 1/2[2/5u^(5/2)+2/3u^(1/2)] +C

= 1/15[3u^(5/2)+5u^(3/2)]+C

= 1/15 u^(3/2)[3u+5]+C

Back-substituting gets us

= 1/15 (x^2-1)^(3/2)[3(x^2-1)+5]+C

= 1/15 (x^2-1)^(3/2)(3x^2+2)+C