How do you integrate int x arctan x using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Bio Nov 4, 2015 intxtan^{-1}(x)dx=1/2[(x^2+1)tan^{-1}(x)-x]+c, where c is the constant of integration. Explanation: intxtan^{-1}(x)dx=1/2intfrac{d}{dx}(x^2)tan^{-1}(x)dx =1/2[x^2tan^{-1}(x)-intx^2frac{d}{dx}(tan^{-1}(x))dx] =1/2x^2tan^{-1}(x)-1/2intx^2(frac{1}{1+x^2})dx =1/2x^2tan^{-1}(x)-1/2int(1-frac{1}{1+x^2})dx =1/2x^2tan^{-1}(x)-1/2(x-tan^{-1}(x))+c, where c is the constant of integration =1/2[(x^2+1)tan^{-1}(x)-x]+c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1772 views around the world You can reuse this answer Creative Commons License