How do you integrate int x e^ sqrtx dx xexdx using integration by parts?

1 Answer
Mar 17, 2016

intxe^sqrt(x)dx = 2e^sqrt(x)(x^(3/2)-3x+6sqrt(x)-6)+Cxexdx=2ex(x323x+6x6)+C

Explanation:

First, we use substitution.

Let t = sqrt(x) => dt = 1/(2sqrt(x))dxt=xdt=12xdx and t^3 = x^(3/2)t3=x32

Then, substituting, we have

intxe^sqrt(x)dx = 2intx^(3/2)e^sqrt(x)1/(2sqrt(x))dx = 2intt^3e^tdtxexdx=2x32ex12xdx=2t3etdt

Next, we apply integration by parts three times, using the formula

intudv = uv - intvduudv=uvvdu

Integration by Parts 1:

Let u = t^3u=t3 and dv = e^tdtdv=etdt
Then du = 3t^2dtdu=3t2dt and v = e^tv=et

Applying the formula:
2intt^3e^tdt = 2(t^3e^t - 3intt^2e^tdt)2t3etdt=2(t3et3t2etdt)

Integration by Parts 2:

Focusing on the remaining integral, let u = t^2u=t2 and dv = e^tdtdv=etdt
Then du = 2tdtdu=2tdt and v = e^tv=et

Applying the formula:
intt^2e^tdt = t^2e^t - 2intte^tdtt2etdt=t2et2tetdt

Integration by Parts 3:

Again, focusing on the remaining integral, let u = tu=t and dv=e^tdtdv=etdt
Then du = dtdu=dt and v = e^tv=et

Applying the formula:
intte^tdt = te^t-inte^tdt = te^t - e^t + Ctetdt=tetetdt=tetet+C

Substituting our result into the second integration by parts step, we obtain

intt^2e^tdt = t^2e^t-2(te^t-e^t) + C = e^t(t^2-2t+2)+Ct2etdt=t2et2(tetet)+C=et(t22t+2)+C

Substituting this into the first integration by parts step, we obtain

2intt^3e^tdt = 2[t^3e^t-3e^t(t^2-2t+2)]+C2t3etdt=2[t3et3et(t22t+2)]+C

=2e^t(t^3-3t^2+6t-6)+C=2et(t33t2+6t6)+C

Finally, we substitute t=sqrt(x)t=x back in to obtain our final result:

intxe^sqrt(x)dx = 2e^sqrt(x)(x^(3/2)-3x+6sqrt(x)-6)+Cxexdx=2ex(x323x+6x6)+C