How do you integrate #int x^nsinx^(n)dx# using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer James May 5, 2018 answer #int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[n*x^(2n)*cosx^n]/(n+1)*dx# Explanation: integration by parts #int x^nsinx^(n)dx# suppose: #u=sin(x^n)# #du=cos(x^n)*n*x^(n-1)*dx# #dv=x^n*dx# #v=1/(n+1)*x^(n+1)# #intu*dv=uv-intv*du# #int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[1/(n+1)*x^(n+1)][cos(x^n)*n*x^(n-1)]*dx# #int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[n*x^(2n)*cosx^n]/(n+1)*dx# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 4715 views around the world You can reuse this answer Creative Commons License