How do you integrate int x/sqrt(x+1) using substitution?

2 Answers
Oct 24, 2016

y=(2(x+1)^(3/2))/3-2sqrt(x+1)+c

Explanation:

so let us take,

u=x+1

so we differentiate this to find that

(du)/(dx)=1

and x=u-1

so let's rewrite our original integral

int(x/sqrt(x+1))dx

=int((u-1)/sqrt(u))(1)dx

=int(u/sqrt(u)-1/sqrt(u))(du)/(dx)dx

=int(sqrt(u)-1/sqrt(u))(du)

=(2u^(3/2))/3-2sqrt(u)+c

we can now sub in the x+1 " for the u's" if we need,

=(2(x+1)^(3/2))/3-2sqrt(x+1)+c

Oct 24, 2016

The integral is =2/3sqrt(x+1)(x-2)+C

Explanation:

Let u=x+1 and x=u-1

the du=dx
Soint(xdx)/sqrt(x+1)=int((u-1)du)/u^(1/2)

=int(u^(1/2)-u^(-1/2))du

=u^(3/2)/(3/2)-u^(1/2)/(1/2)

=2/3u*sqrtu-2sqrtu
=2*sqrtu(1/3u-1)
=2/3sqrtu(u-3)

Replacing u by (x+1)

int(xdx)/sqrt(x+1)=2/3sqrt(x+1)(x+1-3)+C

=2/3sqrt(x+1)(x-2)+C