If y=arcsecxy=arcsecx
secy=xsecy=x
1/cosy=x1cosy=x
cosy=1/x=x^(-1)cosy=1x=x−1
siny=sqrt(x^2-1)/xsiny=√x2−1x
(-siny)dy/dx=-1/x^2(−siny)dydx=−1x2
dy/dx=1/(x^2siny)dydx=1x2siny
=1/(x^2*sqrt(x^2-1)/x)=1/(xsqrt(x^2-1))=1x2⋅√x2−1x=1x√x2−1
Let's do the integration by parts
intuv'=uv-intu'v
u=arcsecx, u'=1/(xsqrt(x^2-1))
v'=x, v=x^2/2
intxarcsecxdx=x^2/2arcsecx-int(x^2dx)/(2xsqrt(x^2-1))
int(x^2dx)/(2xsqrt(x^2-1))=1/2int(xdx)/sqrt(x^2-1)
Let u=x^2-1, du=2xdx, xdx=(du)/2
1/2int(xdx)/sqrt(x^2-1)=1/4int(du)/(sqrtu)
=1/4*sqrtu/(1/2)
=1/2sqrtu=1/2*sqrt(x^2-1)
So,
intxarcsecxdx=x^2/2arcsecx-1/2*sqrt(x^2-1)
int_2^4xarcsecxdx= [x^2/2arcsecx]_2^4 - [1/2*sqrt(x^2-1)]_2^4
=16/2arcsec4-4/2arcsec2-(1/2*sqrt15-1/2sqrt3)
=8*1.32-2*1.05-1/2(sqrt15-sqrt3)
=10.56-2.1-1.07
=7.39