Looking first at the indefinite integral, ie
int x arcsin(x^2) dx
We can use IBP:
= int (x^2/2)^prime arcsinx^2 dx
= x^2/2 arcsinx^2 - int x^2/2 (arcsinx^2)^prime dx
Recognising that: d/dx(arcsin(u)) = 1/sqrt(1 - u^2) * (du)/dx
= x^2/2 arcsinx^2 - int x^2/2 * (2x)/sqrt(1-x^4) dx
= x^2/2 arcsinx^2 - int x^3/sqrt(1-x^4) dx
= x^2/2 arcsinx^2 - int 2 * (-1/4) * ( sqrt(1-x^4) )^prime dx
= x^2/2 arcsinx^2 + 1/2 sqrt(1-x^4) + C
The definite integral is, therefore:
[x^2/2 arcsinx^2 + 1/2 sqrt(1-x^4) ]_0^1
= (1/2 * pi/2 + 1/2 * 0 ) - (0 + 1/2 )
= pi/4 - 1/2