How do you integrate int xarcsinx^2 by parts from [0,1]?

1 Answer
Feb 6, 2017

= pi/4 - 1/2

Explanation:

Looking first at the indefinite integral, ie

int x arcsin(x^2) dx

We can use IBP:

= int (x^2/2)^prime arcsinx^2 dx

= x^2/2 arcsinx^2 - int x^2/2 (arcsinx^2)^prime dx

Recognising that: d/dx(arcsin(u)) = 1/sqrt(1 - u^2) * (du)/dx

= x^2/2 arcsinx^2 - int x^2/2 * (2x)/sqrt(1-x^4) dx

= x^2/2 arcsinx^2 - int x^3/sqrt(1-x^4) dx

= x^2/2 arcsinx^2 - int 2 * (-1/4) * ( sqrt(1-x^4) )^prime dx

= x^2/2 arcsinx^2 + 1/2 sqrt(1-x^4) + C

The definite integral is, therefore:

[x^2/2 arcsinx^2 + 1/2 sqrt(1-x^4) ]_0^1

= (1/2 * pi/2 + 1/2 * 0 ) - (0 + 1/2 )

= pi/4 - 1/2