How do you integrate int xcosxxcosx by parts from [0,pi/2][0,π2]?

1 Answer
Nov 21, 2016

int_0^(pi/2)xcosxdx=pi/2-1π20xcosxdx=π21

Explanation:

Parts formula.

intu(dv)/(dx)dx=uv-intv(du)/(dx)dxudvdxdx=uvvdudxdx

int_0^(pi/2)xcosxdxπ20xcosxdx

u=x=>(du)/(dx)=1u=xdudx=1

(dv)/(dx)=cosx=>v=sinxdvdx=cosxv=sinx

I=[xsinx-int(sinx)dx]_0^(pi/2)I=[xsinx(sinx)dx]π20

I=[xsinx+cosx]_0^(pi/2)I=[xsinx+cosx]π20

now substitute the limits in

I=[(pi/2)sin(pi/2)+cos(pi/2)]-[0xxsin0+cos0]I=[(π2)sin(π2)+cos(π2)][0×sin0+cos0]

I=[(pi/2)cancel(sin(pi/2))^1+cancel(cos(pi/2))^0]-[cancel(0xxsin0)^0+cancel(cos0)^1]

int_0^(pi/2)xcosxdx=pi/2-1