How do you integrate int xe^(x/2) using integration by parts?

1 Answer
Apr 20, 2018

intxe^(x/2)dx=2e^(x/2)(x-2)+C

Explanation:

Make the following selections:

u=x

du=dx

dv=e^(x/2)dx

v=inte^(x/2)dx=2e^(x/2)

Then

uv-intvdu=2xe^(x/2)-2inte^(x/2)dx=2xe^(x/2)-4e^(x/2)+C

Factoring out the exponential, we obtain

intxe^(x/2)dx=2e^(x/2)(x-2)+C