How do you integrate int xe^-x by integration by parts method?
1 Answer
Nov 27, 2016
Explanation:
We have the integral
{(u=x,=>,du=dx),(dv=e^-xdx,=>,v=-e^-x):}
To go from
So:
intxe^-xdx=uv-intudv=-xe^-x+inte^-xdx
We've already done this integral:
intxe^-xdx=-xe^-x-e^-x
intxe^-xdx=-e^-x(x+1)+C