How do you integrate int xe^-x by integration by parts method?

1 Answer
Nov 27, 2016

-e^-x(x+1)+C

Explanation:

We have the integral intxe^-xdx. We want to apply integration by parts, which fits the form intudv=uv-intdvu. So for the given integral, let:

{(u=x,=>,du=dx),(dv=e^-xdx,=>,v=-e^-x):}

To go from dv to v, the integration will require a substitution. Think for inte^-xdx, let t=-x.

So:

intxe^-xdx=uv-intudv=-xe^-x+inte^-xdx

We've already done this integral:

intxe^-xdx=-xe^-x-e^-x

intxe^-xdx=-e^-x(x+1)+C