How do you integrate int xsin2x by parts from [0,pi]?

1 Answer
Feb 5, 2017

int_0^pi xsin2x dx =-pi/2

Explanation:

Consider the integral:

int_0^pi xsin2x dx

Note that:

d(-1/2cos2x) = sin2x dx

so we can integrate by parts:

int_0^pi xsin2x dx = int_0^pi xd(-1/2cos2x)

int_0^pi xsin2x dx = [-(xcos2x)/2]_0^pi +1/2 int _0^pi cos2x dx

int_0^pi xsin2x dx = [-(xcos2x)/2]_0^pi +1/4 [sin2x]_0^pi

int_0^pi xsin2x dx = [-(picos(2pi))/2 +0] + [0 -0]

int_0^pi xsin2x dx =-pi/2