How do you integrate int y/(e^(2y))ye2y by integration by parts method?

1 Answer
Dec 9, 2016

I = c -(ye^(-2y))/2 - e^(-2y)/4I=cye2y2e2y4

Explanation:

We have

I = int y/e^(2y)dyI=ye2ydy

With some simple rewriting, based on the properties of exponentials 1/a^(x) = a^(-x)1ax=ax

I = int ye^(-2y)dyI=ye2ydy

If we say

u = yu=y so du = dydu=dy
dv = e^(-2y)dydv=e2ydy so v = -e^(-2y)/2v=e2y2

By the integration by parts formula

int udv = uv - int vduudv=uvvdu

I = -(ye^(-2y))/2 - int-e^(-2y)/2dyI=ye2y2e2y2dy

Putting the constants outside of the integral

I = -(ye^(-2y))/2 +1/2int e^(-2y)dyI=ye2y2+12e2ydy
I = c -(ye^(-2y))/2 - e^(-2y)/4I=cye2y2e2y4