How do you integrate int1/(1+x^2) + int x/(1+x^2) dx?

1 Answer
Apr 1, 2018

int dx/(1+x^2) + int x/(1+x^2) = arctanx + ln sqrt (1+x^2) +C

Explanation:

The first integral is a well known anti-derivative:

int dx/(1+x^2) = arctanx +C

For the second we can substitute:

x^2 = u

2xdx = du

so:

int x/(1+x^2) = 1/2 int (du)/(1+u) = ln sqrt abs (1+u)+C

then:

int dx/(1+x^2) + int x/(1+x^2) = arctanx + ln sqrt (1+x^2) +C