Use integration by parts
\intu \quad dv=uv-intv du
Let u=x, \quad \implies du=dx
and let \quad \quaddv=cos(2x)dx, \implies v=1/2sin(2x)
Now integrate by parts
intxcos(2x)dx=intu\quaddv=uv-intvdu
\quad \quad \quad \quad \quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad \quad =x*1/2sin(2x)-int1/2sin(2x)dx
\quad \quad \quad \quad \quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad \quad =x/2sin(2x)+1/4cos(2x)+C
where C is the constant of integration.
Quick note on how to get integration by parts formula:
The differential of uv is
d[uv]=udv+vdu
udv=d[uv]-vdu
Integrate both sides
\int udv=int d[uv]-int vdu
\int u dv=uv-intvdu