How do you integrate [ln(lnx)]/[x] dx?

2 Answers
Jun 27, 2016

lnx ln ln x- ln x

Explanation:

This can be done by u substitution. Let lnx =u, so that 1/x dx =du

enter image source here

Jun 27, 2016

int(ln(lnx))/xdx=lnxln(lnx)-lnx+c

Explanation:

Let z=lnx then dz=dx/x

Hence int(ln(lnx))/xdx=intlnzdz

Now using integration by parts, if u=lnz and v=z

As intudv=uv-intvdu, we have

intlnzdz=lnzxxz-intzdz/z=zlnz-z

Hence int(ln(lnx))/xdx=lnxln(lnx)-lnx+c