How do you integrate [ln sqrt x] / x?

1 Answer
Apr 12, 2018

The integral equals 1/4ln^2x + C

Explanation:

We can rewrite using logarithm laws.

I = int ln(x^(1/2))/xdx

I =int lnx/(2x) dx

We now let u = lnx. Then du = 1/xdx and then dx= xdu.

I = int u/(2x) * x du

I = int 1/2u du

I = 1/2(1/2u^2) + C

I = 1/4ln^2x + C

Hopefully this helps!