How do you integrate ln(x^(1/3))?

1 Answer
Mar 19, 2018

1/3xlnx-1/3x+c

Explanation:

I=intln(x^(1/3))dx

using the laws of logs

I=int 1/3lnxdx

#

we will integrate by parts

I=1/3intlnxdx

I=intu(dv)/(dx)dx=uv-intv(du)/(dx)dx

u=lnx=>(du)/(dx)=1/x

(dv)/(dx)=1=>v=x

:.I=1/3[xlnx-intx xx 1/xdx]

I=1/3[xlnx-intdx]

=1/3[xlnx-x]+c

1/3xlnx-1/3x+c