How do you integrate ln(x^(1/3))? Calculus Techniques of Integration Integration by Parts 1 Answer sjc Mar 19, 2018 1/3xlnx-1/3x+c Explanation: I=intln(x^(1/3))dx using the laws of logs I=int 1/3lnxdx # we will integrate by parts I=1/3intlnxdx I=intu(dv)/(dx)dx=uv-intv(du)/(dx)dx u=lnx=>(du)/(dx)=1/x (dv)/(dx)=1=>v=x :.I=1/3[xlnx-intx xx 1/xdx] I=1/3[xlnx-intdx] =1/3[xlnx-x]+c 1/3xlnx-1/3x+c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 9776 views around the world You can reuse this answer Creative Commons License