int Ln(x^2+13x+40)*dx
=xLn(x^2+13x+40)-int x*((2x+13)*dx)/(x^2+13x+40)
=xLn(x^2+13x+40)-int ((2x^2+13x)*dx)/(x^2+13x+40)
=xLn(x^2+13x+40)-int ((2x^2+26x+80-13x-80)*dx)/(x^2+13x+40)
=xLn(x^2+13x+40)-int 2dx+int ((13x+80)*dx)/(x^2+13x+40)
=xLn(x^2+13x+40)-2x+C1+int ((52x+320)*dx)/(4x^2+52x+160)
=xLn(x^2+13x+40)-2x+C1+int ((26x+160)*2dx)/((2x+13)^2-3^2)
A=int ((26x+160)*2dx)/((2x+13)^2-3^2)
After using 2x+13=3secy, 2dx=3secy*tany*dy and x=(3secy-13)/2 transforms, A became
A=int ((26*(3secy-13)/2+160)*3secy*tany*dy)/(9(tany)^2)
=int ((39secy-9)*secy*dy)/(3tany)
=13int((secy)^2*dy)/(tany)-3int (secy*dy)/tany
=13Ln(tany)-3int cscy*dy
=13/2Ln((tany)^2)-3int (cscy*(cscy+coty)*dy)/(cscy+coty)
=13/2Ln((secy)^2-1)+3Ln(cscy+coty)
=13/2Ln((secy)^2-1)+3Ln((secy+1)/tany)
=13/2Ln((secy)^2-1)+3Ln((secy+1)/sqrt((secy)^2-1))
=13/2Ln((secy)^2-1)+3/2Ln((secy+1)^2/((secy)^2-1))
=13/2Ln((secy)^2-1)+3/2Ln((secy+1)/(secy-1))
After using 2x+13=3secy and secy=(2x+13)/3 inverse transforms, I found
A=13/2Ln((2x+13)/3)^2-1)+3/2Ln(((2x+13)/3+1)/((2x+13)/3-1))
=13/2Ln((4x^2+52x+160)/9)+3/2Ln((x+8)/(x+5))
Thus,
int Ln(x^2+13x+40)*dx
=xLn(x^2+13x+40)-2x+C1+13/2Ln((4x^2+52x+160)/9)+3/2Ln((x+8)/(x+5))
=xLn(x^2+13x+40)-2x+13/2Ln((x^2+13x+40)+3/2Ln((x+8)/(x+5))+C
=(2x+13)/2*Ln(x^2+13x+40)-2x+3/2Ln((x+8)/(x+5))+C
Note: C=C1-13/2*Ln(4/9)=C1+13Ln(3/2)