How do you integrate (ln x) ^ 2 / x ^ 2(lnx)2x2?

1 Answer
Dec 9, 2016

I = c-((lnx)^2 + 2lnx + 2)/xI=c(lnx)2+2lnx+2x

Explanation:

We have

I = int (lnx)^2/x^2dxI=(lnx)2x2dx

If z = lnxz=lnx then dz = dx/xdz=dxx and

z = ln xz=lnx so e^z = xez=x

I = int z^2e^(-z)dzI=z2ezdz

Integrating by parts

u = z^2u=z2 so du = 2z dzdu=2zdz
dv = e^(-z) dzdv=ezdz so v = -e^(-z)v=ez

I = u*v - int v duI=uvvdu
I = -z^2e^(-z) + 2intze^(-z)dzI=z2ez+2zezdz

Integrating by parts once again

u = zu=z so du = dzdu=dz
dv = e^(-z)dzdv=ezdz so v = -e^(-z)v=ez

I = -z^2e^(-z) + 2(-ze^(-z) + inte^(-z)dz)I=z2ez+2(zez+ezdz)
I = -z^2e^(-z) - 2ze^(-z) - 2e^(-z) + cI=z2ez2zez2ez+c
I = -e^(-z)(z^2 + 2z + 2) + cI=ez(z2+2z+2)+c

But we want to have an answer in terms of xx so if we remember that z = ln(x)z=ln(x) we'll have

I = -e^(-ln(x))((lnx)^2 + 2lnx + 2) +cI=eln(x)((lnx)2+2lnx+2)+c
I = c-((lnx)^2 + 2lnx + 2)/xI=c(lnx)2+2lnx+2x