How do you integrate (ln x)^2/ x^3 dx?

1 Answer
Apr 20, 2015

let's start by u = ln(x)
du = 1/x

int ln^2(x)/x^3dx =int 1/x^2*1/x*ln^2(x) =int 1/x^2*u^2du

u = ln(x)
e^u=x
e^(2u) = x^2
e^(-2u)= 1/x^2

So now we have :

=>inte^(-2u)*u^2du

By part :

dv= e^(-2u)
v =-1/2e^(-2u)

w = u^2
dw = 2u

=>-1/2[u^2*e^(-2u)]+intu*e^(-2u)du

By part again :

dv = e^(-2u)
v = -1/2e^(-2u)
w = u
dw = 1

=>-1/2[u^2*e^(-2u)]-1/2[e^(-2u)*u]+1/2inte^(-2u)du

=>-1/2[u^2*e^(-2u)]-1/2[e^(-2u)*u]-1/4[e^(-2u)]

Substitute back for u = ln(x)

=>-1/2[ln^2(x)*1/x^2]-1/2[ln(x)*1/x^2]-1/4[1/x^2]+C

=>-1/(4x^2)(2ln^2(x)+2ln(x)+1)+C