How do you integrate (ln x / 3)^3?
1 Answer
Explanation:
Note that
int(lnx/3)^3dx=1/27intln^3xdx
Using integration by parts:
intudv=uv-intvdu
We let
u=ln^3x" "=>" "du=(3ln^2x)/xdx
dv=(1)dx" "=>" "v=x
This gives us:
1/27intln^3xdx=1/27xln^3x-1/27int3ln^2xdx
=1/27xln^3x-1/9intln^2xdx
Integrate
u=ln^2x" "=>" "du=(2lnx)/xdx
dv=(1)dx" "=>" "v=x
Thus,
intln^2x=xln^2x-int2lnxdx
Combining this and multiplying by
1/27intln^3xdx=(xln^3x)/27-(xln^2x)/9+2/9intlnxdx
Use integration by parts one last time:
u=lnx" "=>" "du=1/xdx
dv=(1)dx" "=>" "v=x
Thus,
intlnxdx=xlnx-intdx=xlnx-x
Hence,
1/27intln^3xdx=(xln^3x)/27-(xln^2x)/9+(2xlnx)/9-(2x)/9+C
Don't forget the constant of integration!