How do you integrate (ln x / 3)^3?

1 Answer
Apr 20, 2016

int(lnx/3)^3dx=(xln^3x)/27-(xln^2x)/9+(2xlnx)/9-(2x)/9+C

Explanation:

Note that (lnx/3)^3=ln^3x/27. From this, we see that

int(lnx/3)^3dx=1/27intln^3xdx

Using integration by parts:

intudv=uv-intvdu

We let

u=ln^3x" "=>" "du=(3ln^2x)/xdx

dv=(1)dx" "=>" "v=x

This gives us:

1/27intln^3xdx=1/27xln^3x-1/27int3ln^2xdx

=1/27xln^3x-1/9intln^2xdx

Integrate intln^2xdx similarly (using by parts again):

u=ln^2x" "=>" "du=(2lnx)/xdx

dv=(1)dx" "=>" "v=x

Thus,

intln^2x=xln^2x-int2lnxdx

Combining this and multiplying by -1/9, we see that:

1/27intln^3xdx=(xln^3x)/27-(xln^2x)/9+2/9intlnxdx

Use integration by parts one last time:

u=lnx" "=>" "du=1/xdx

dv=(1)dx" "=>" "v=x

Thus,

intlnxdx=xlnx-intdx=xlnx-x

Hence,

1/27intln^3xdx=(xln^3x)/27-(xln^2x)/9+(2xlnx)/9-(2x)/9+C

Don't forget the constant of integration!